Everything you will ever need to know about statistics...?

Larkin Powell

Polytechnic of Namibia November 2009 workshop SNRT
Ipowell3@unl.edu

Categorical data

- Summarizing responses to a categorical question, what is your favorite type of animal in Namibia?

Categorial and continuous data

- Comparing continuous date between two categories: how often is the female bird absent from the nest?

Present

A better example

[^0]Relationship between two sets of continuous data

\qquad Figure 1 - Relationship between peach palm fruit surface area estimated methods.

In general

- Categorial data:
- Use chi-square test to see if frequencies of responses are similar between groups
- Continuous data:
- Use t-test or ANOVA to see if means of a response differ between groups (groups are categorial data!)
- Use correlation or regression to evaluate relationship between two continuous sets of data (e.g. rainfall and temperature)

Hypotheses and P-values

- Working: your statement of what you think - "I think fertilizer affects growth rates of plants."
- Null: usually, the opposite of what you think - Ho: Gf = Gnf
- Alternate: statistics statement of your working hypothesis
- HA: Gf <> Gnf
- P-value: the probability that your null hypothesis is true
- $P=0.23: 23 \%$ chance that your null is true
- $P=0.02$ 2\% chance that your null is true

Examples: calculating expected

 frequencies

Chi-square: goodness of fit test

- Compares observed frequency distribution to expected distribution

$$
\text { arranged breeding: } 8 \text { brown: } 2 \text { white: } 3 \text { spotted }
$$

A farmer complains that he got fewer brown sheep than expected and wants his money back. From 250 lambs, how many brown, white, and spotted individuals were expected?

$$
\text { Brown: } 8 / 13 \quad=0.62 \quad 0.62 * 250=154
$$

$$
\text { White: } 2 / 13 \quad=? \quad ? * 250=
$$

$$
\text { Spotted } 3 / 13 \quad=? \quad ? * 250=
$$

$$
X^{2}=\sum_{i=1}^{k} \frac{(O-E)^{2}}{E}
$$

Coin flip example:
55 heads, 45 tails
$K=$ number of
categories

Degrees of freedom

- The chi-square statistic can also get larger the more categories you have. So, we have to take the number of categories into account.
- Degrees of freedom: The number of independent pieces of information that go into the estimate of a parameter
a number of values in the final calculation of a statistic that are free to vary

Contigency tables: comparing >1 group

	Species 1	Species 2	Species 3
Lived	8	6	13
Died	12	14	7

Null hypothesis: Species 1, 2, and 3 survived at the same rate.

Degrees of freedom

- For simple (1 dimension) comparisons, $\mathrm{df}=\mathrm{k}-1$
- $k=$ number of categories
- In our coin toss example, $\mathrm{df}=2-1=1$

COMPUTER BREAK!!

How to get expected values

Observed	Species 1	Species 2	Species 3
Lived	8	6	13
Died	12	14	7
Expected	Species 1	Species 2	Species 3
Lived	9	9	9
Died	11	11	11
$(8-9)^{2 / 9}=0.11$	$(6-9)^{2 / 9}=1.0 \quad(13-9)^{2 / 9} 91.78$		$X^{2}=\sum_{B}^{2} \frac{(O-E)^{2}}{E}$
$(12-11)^{2} / 11=0.09$	$(14-11)^{2} / 11=0.81(7-11)^{2} / 11$		
Chi-square $=5.24 \mathrm{df}=(\text { rows }-1)^{*}($ cols -1$)=1 * 2=2 \quad P<0.05$			

Descriptive stats: central tendency

- How do we summarize continuous data?
- Does data accumulate around a certain value?
- Mean, median, mode...
\qquad

Mode and median

- Median: middle number in ordered list
- 9, 15, 22, 22, 24, 29, 30
- Mode: number repeated more than any other
- 9, 15, 22, 22, 24, 29, 30

COMPUTER BREAK!!

Mean

- The mean of a population: $\mu(\mathrm{mu})$
- The mean of a sample: \bar{x}
- Calculated as: $\quad \bar{x}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}$
- So, the mean of $9,15,22,22,24,29,30=$
- $(9+15+22+22+24+29+30) / 7=21.6$

Using SD to make confidence intervals

68% of measurements are within 1 SD of the mean.
95% of measurements are within 2 SD of the mean.
99.7% of measurements are within 3 SD of the mean. take the square root. This is the SD:
$s=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}, \begin{aligned} & \begin{array}{l}\text { So, if } \mathrm{s}^{2}=20.3, \mathbf{s}=4.5 \\ \text { (take square root of }\end{array}\end{aligned}$ 20.3)

COMPUTER BREAK!!

Tests of normality—useless? Mostly.

- Usually done to determine:
- Are data normally distributed?
- Can I use a parametric test (t-test, ANOVA)?
- Many statisticians suggest "normality tests are less useful than you'd guess."
- Small samples almost always pass test for normality
- Large samples (more power) will fail test because of small deviations which will not affect t-test/ANOVA
- "The best way to evaluate your data is to look at a graph and see if the distribution deviates grossly from a bellshaped normal distribution."
www.graphpad.com/library/BiostatsSpecial/article_197.htm

Final quote

- "If ecologists are careful about randomly sampling the populations about which they want to draw inferences, standard parametric methods will ordinarily be adequate; if they are not nonparametric methods will not protect them from sailing off course."

Johnson, D. H. 1995. Statistical sirens: the allure of nonparametrics Ecology 76: 1998-2000

Non-normal data...

 The year printed on pennies (1970, 1980, 1990, 2000, etc.)

More reasons to not worry about normality tests

- Data do NOT need to be normally distributed to use a t-test or ANOVA
- The means of the sample need to be normally distributed
- This will be assured for all but the most "perverse" data
- Non-parametric tests do not test for differences in means
- They test whether the data distributions are identical between two sets
- A 'significant result' only tells you that they differ in some way (mean, variance, shape, etc.)
- We normally want to infer something about the parameters (e.g., means) estimated by parametric tests. It is illogical to use a non-parametric test and then report a mean...!

Johnson, D. H. 1995. Statistical sirens: the allure of nonparametrics Ecology 76: 1998-2000

A "normal" normal probability plot

COMPUTER BREAK!!

Suppose we conducted a study to compare two strategies for teaching spelling.
Group A had a mean score of 19. The range of scores was 16 to 22 , and the standard deviation was 1.5 .

Group B had a mean score of $\mathbf{2 0}$. The range of scores was 17 to 23 , and the standard deviation was 1.5 .

How confident can we be that the difference we found between the means of Group A and Group B occurred because of differences in our reading strategies, rather than by chance?

Spelling Test Scores

A t-test allows us to compare the means of two groups and determine how likely the difference between the two means occurred by chance.

The calculations for a t-test requires three pieces of information:

- the difference between the means (mean difference)
- the standard deviation for each group
- and the number of subjects in each group.

The size of the standard deviation also influences the outcome of a t-test.

Given the same difference in means, groups with smaller standard deviations are more likely to report a significant difference than groups with larger standard deviations.

Spelling Test Scores

The size of our sample is also important. The more subjects that are involved in a study, the more confident we can be that the differences we find between our groups did not occur by chance.

Spelling Test Scores

Comparisons involving means

- Comparing the means
of two dependent samples
- The weight of kudu bulls are compared in two samples from before winter and after winter.
- Each bull is weighed twice. The samples are not independent (same animals).
- t -test of differences (2tailed)
$\mathrm{df}=\mathrm{n}-1$
Null hypothesis: difference is 0
If $\mathrm{P}<0.05$, reject the null. The animals do not weigh the same

Comparisons involving means

- Comparing the means of two independent samples
- The weight of kudu bulls are compared in two samples from farms in northwestern Namibia and farms near Windhoek.
- Sampling one herd does not affect the sampling of the other herd.
- Standard t-test (2-tailed)
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

$$
d f=\left(n_{1}-1\right)+\left(n_{2}-1\right)
$$

Null hypothesis: no difference between means
If $\mathrm{P}<0.05$, reject the null. There is a difference.

Two-tailed t-tests

- Suppose we use the 0.05 level of significance.
- A two-tailed test divides the 0.05 into the two tails: 0.025 in each.
- Performed if the results will be interesting if difference occurs in either direction (Pop 1 is either greater or less than Pop 2).

Comparing 1-tailed and 2-tailed

- Are your workers putting more than 200 g in the seed packets?
- Mean content $=202 \mathrm{~g}$
- $\mathrm{SD}=4.431 \mathrm{~g}$
- Two-tailed question: is mean more or less than 200 g ?
- Use 0.05 to find critical t value.
- One-tailed: is mean more than 200 g ? level of significance.
- A one tailed test places all 0.05 in one tail (you decide which one).
- Performed if the results are only interesting if they occur in a certain direction (Pop 1 is greater than Pop 2).
significance.

T-test: car mileage comparison

t-Test: Two-Sample Assuming Equal Variances		
	Variable 1	Variable 2
Mean	$\mathbf{1 6 . 0 2 5 3 1 6 4 6}$	$\mathbf{3 0 . 4 8 1 0 1 2 6 6}$
Variance	17.61473548	37.30412204
Observations	79	79
Pooled Variance	27.45942876	
Hypothesized Mean Difference	0	
df	156	
t Stat	-17.33771307	
P(T<=t) one-tail	$1.63382 \mathrm{E}-38$	
t Critical one-tail	1.654679996	
P(T<t) two-tail	$3.26764 \mathrm{E}-38$	
t Critical two-tail	$\mathbf{1 . 9 7 5 2 8 7 4 7 3}$	

Wilcoxen Rank Sum Test

- To compare two	Weights of kudu's harvested by two Professional Hunters. Are the weights of PH A heavier than PH B?	
- Non-parametric (does	PH A	PH B
not assume normality)	600	620
- Uses 'ranks' of the data	650	640
	633	650
	700	500
	710	705

\qquad

	500	600	620	633	640	650	650	700	705	710
PH	B	A	B	A	B	A	B	A	B	A
Rank	1	2	3	4	5	6.5	6.5	8	9	10

Sum of ranks:
PH A: $2+4+6.5+8+10=30.5$
Ph B: $1+3+5+6.5+9=24.5 \leftarrow----$ smaller of the two rank sums
Calculate U , where $\mathrm{W}=$ smaller rank sum, n 1 is size of smallest sample, and n 2 is size of other sample.
$U=W-\frac{n_{1}\left(n_{2}+1\right)}{2}$

$$
U=24.5-\frac{5(5+1)}{2}=24.5-15=9.5
$$

Now, use data to calculate:
$\mu_{U}=\frac{n_{1} n_{2}}{2}=\frac{5 * 5}{2}=12.5 \quad \leftarrow$ mean of U
$s_{U}=\frac{\sqrt{n_{1} n_{2}\left(n_{1}+n_{2}+2\right)}}{12} \quad \leftarrow \mathrm{SD}$ of U
$s_{U}=\frac{\sqrt{5 * 5(5+5+2)}}{12}=\frac{\sqrt{25 * 12}}{12}=\frac{17.3}{12}=1.44$

Now, calculate the Z statistic:$z=\frac{U-\mu_{U}}{s_{U}}=\frac{9.5-12.5}{1.4}=-2.14$

Correlation analysis: r-statistic

COMPUTER BREAK!!

[^0]:
 1

